The Internet and your brain are more alike than you think


Credit: Salk Institute

LA JOLLA--(February 9, 2017) Although we spend a lot of our time online nowadays--streaming music and video, checking email and social media, or obsessively reading the news--few of us know about the mathematical algorithms that manage how our content is delivered. But deciding how to route information fairly and efficiently through a distributed system with no central authority was a priority for the Internet's founders. Now, a Salk Institute discovery shows that an algorithm used for the Internet is also at work in the human brain, an insight that improves our understanding of engineered and neural networks and potentially even learning disabilities.

"The founders of the Internet spent a lot of time considering how to make information flow efficiently," says Salk Assistant Professor Saket Navlakha, coauthor of the new study that appears online in Neural Computation on February 9, 2017. "Finding that an engineered system and an evolved biological one arise at a similar solution to a problem is really interesting."

In the engineered system, the solution involves controlling information flow such that routes are neither clogged nor underutilized by checking how congested the Internet is. To accomplish this, the Internet employs an algorithm called "additive increase, multiplicative decrease" (AIMD) in which your computer sends a packet of data and then listens for an acknowledgement from the receiver: If the packet is promptly acknowledged, the network is not overloaded and your data can be transmitted through the network at a higher rate. With each successive successful packet, your computer knows it's safe to increase its speed by one unit, which is the additive increase part. But if an acknowledgement is delayed or lost your computer knows that there is congestion and slows down by a large amount, such as by half, which is the multiplicative decrease part. In this way, users gradually find their "sweet spot," and congestion is avoided because users take their foot off the gas, so to speak, as soon as they notice a slowdown. As computers throughout the network utilize this strategy, the whole system can continuously adjust to changing conditions, maximizing overall efficiency.

To see the entire article click

Comments are closed.